‘Meta’ Approaches to Protein Structure Prediction
نویسندگان
چکیده
The computational assignment of three-dimensional structures to newly determined protein sequences is becoming an increasingly important element in experimental structure determination and in structural genomics (Fischer et al. 2001a). In particular, fold-recognition methods aim to predict approximate three-dimensional (3D) models for proteins bearing no evident sequence similarity to any protein of known structure (see the review by Cymerman et al., this Vol.). The assignment is carried out by searching a library of known structures (usually obtained from the Protein Data Bank) for a compatible fold. A variety of fold-recognition methods has been published, both structure-dependent (i.e.threading) (Sippl and Weitckus 1992; Godzik et al. 1992; Jones et al. 1992; Ouzounis et al. 1993; Bryant and Lawrence 1993; Rost 1995; Alexandrov et al. 1996; Di Francesco et al. 1997; Fischer 2000; Kelley et al. 2000; Shi et al. 2001) and sequence-only dependent (Karplus et al. 1998; Rychlewski et al. 2000). The state-of-the-art in the field of fold recognition is currently to combine the evolutionary information available from multiple sequence alignments for the target and the template (to detect remote homology between protein families) and the structural information from the template (to detect similarities of folds of compared proteins regardless of their evolutionary relationship, i.e. analogs and homologues as well).
منابع مشابه
Protein Secondary Structure Prediction: a Literature Review with Focus on Machine Learning Approaches
DNA sequence, containing all genetic traits is not a functional entity. Instead, it transfers to protein sequences by transcription and translation processes. This protein sequence takes on a 3D structure later, which is a functional unit and can manage biological interactions using the information encoded in DNA. Every life process one can figure is undertaken by proteins with specific functio...
متن کاملIn Silico Perspectives on the Prediction of the PLP’s Epitopes involved in Multiple Sclerosis
Background: Multiple sclerosis (MS) is the most common autoimmune disease of the central nervous system (CNS). The main cause of the MS is yet to be revealed, but the most probable theory is based on the molecular mimicry that concludes some infections in the activation of T cells against brain auto-antigens that initiate the disease cascade.Objectives: The Purpose of this research is the...
متن کاملTechnical Report STP: The Sample-Train-Predict Algorithm and Its Application to Protein Structure Meta-Selection
The importance and the difficulty of the folding problem have led scientists to develop several computational methods for protein structure prediction. Despite the abundance of protein structure prediction methods, these approaches have two major limitations. First, the top ranked model reported by a server is not necessarily the best predicted model. The correct predicted model may be ranked w...
متن کاملIn silico investigation of lactoferrin protein characterizations for the prediction of anti-microbial properties
Lactoferrin (Lf) is an iron-binding multi-functional glycoprotein which has numerous physiological functions such as iron transportation, anti-microbial activity and immune response. In this study, different in silico approaches were exploited to investigate Lf protein properties in a number of mammalian species. Results showed that the iron-binding site, DNA and RNA-binding sites, signal pepti...
متن کاملIn Silico Prediction and Docking of Tertiary Structure of Multifunctional Protein X of Hepatitis B Virus
Hepatitis B virus (HBV) infection is a universal health problem and may result into acute, fulminant, chronic hepatitis liver cirrhosis, or hepatocellular carcinoma. Sequence for protein X of HBV was retrieved from Uniprot database. ProtParam from ExPAsy server was used to investigate the physicochemical properties of the protein. Homology modeling was carried out using Phyre2 server, and refin...
متن کاملDetection of reliable and unexpected protein fold predictions using 3D-Jury
3D-Jury is a fully automated protein structure meta prediction system accessible via the Meta Server interface (http://BioInfo.PL/Meta). This is one of the meta predictors, which have made a dramatic, unprecedented impact on the last CASP-5 experiment. The 3D-Jury is comparable with other meta servers but it has the highest combined specificity and sensitivity. The presented method is also very...
متن کامل